Michael Jones’ research focuses on language learning, comprehension, and knowledge representation in humans and machines. Jones combines computational and experimental techniques to examine large-scale statistical structure of certain environments with the goal of understanding how this structure could be learned and represented with the mathematical capabilities of human learning and memory. Jones also studies associative and recognition memory, categorization, decision-making, and the role of attention in reading and perception. He is particularly interested in the temporal dynamics of learning in all these domains, and how to model the time course of knowledge acquisition. His secondary interests involve the application of these models to practical problems in text mining, intelligent search algorithms, and automated comprehension and scoring algorithms.
The National Science Foundation recently awarded Jones a CAREER grant to investigate computational mechanisms for integrating linguistic and perceptual information in semantic representation. This project includes a very large scale “Semantic Pictionary” crowdsourcing project that includes several online games aimed at collecting massive amounts of perceptual data describing tens of thousands of words and explores mechanisms humans use to integrate the perceptual and linguistic information into a unified and embodied semantic representation.
Jones is an assistant professor of psychology at Indiana University, Bloomington. He received his Ph.D. in psychology from Queen’s University in 2005 after which he spent two years as a postdoctoral research fellow at the Institute of Cognitive Science, University of Colorado.
“Solving the Password Problem | Commentary” Roll Call (02/23/2015)